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The spatiotemporal dynamics of networks based on a ring of coupled oscillators with regular shortcuts
beyond the nearest-neighbor couplings is studied by using master stability equations and numerical simula-
tions. The generic criterion for dynamic synchronization has been extended to arbitrary network topologies
with zero row-sum. The symmetry-breaking oscillation patterns that resulted from the Hopf bifurcation from
synchronous states are analyzed by the symmetry group theory.
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Dynamics of networks composed of coupled nonlinear osadding regular long-range links. We show that the generic
cillators with regular or random network topologies is a gen-criterion for synchronization of coupled systems developed
eral and important topic in many fields such as optics, conin Ref.[9] can be applied to a much wider class of networks
densed matter physics, chemistry, and biolofi~6]. of coupled identical dynamic nodes including the asymmet-
Organized networks of elementary dynamical units constituteic networks or the directed graphs, where both the asymme-
a basis for most cognitive structures in living organisms. Intry in the coupling constant and in the network topology are
recent years networks of diffusively or globally coupled taken into account. We also show that the emergent dynamic
regular and chaotic oscillators have attracted considerablgatterns that resulted from symmetry-breaking Hopf bifurca-
attention[7-10. Dynamical processes on small-world net- tions from the synchronous states can be classified by the
works and other networks with dynamical connectivity aregroup properties of underlying symmetry of the network to-
now under intensive studyl1-15. The network topologies pologies. Our numerical results show that the addition of a
of coupled systems currently under investigation are eithefew of nonlocal connections does not necessarily result in a
very simple such as nearest-neighbor and all-to-all connecsynchronization, and under certain circumstance the synchro-
tions, or rather complicated such as an ensemble of randomlyized chaos states may be destabilized by adding arbitrary
connected nodes. Dynamical behaviors on networks witlshortcuts. We find that the addition of regular long-range
high topology symmetries beyond the simple ring or regularconnections to a ring of coupled nodes breaks down the sym-
lattice structures have not been investigated extensively smetry of original network by altering its topology, and there-
far, although the basic theoffy@] and a few of recent at- fore, gives rise to much richer dynamical behaviors and
tempts[16] have been made in this respect. In view of thephase transition scenarios of the coupled systems.
generality and importance of such kind of networks, we pro- To illustrate our idea, we considéd identical coupled
pose and investigate dynamical features exhibited by coupledonlinear oscillators, whose collective dynamics is described
chaotic oscillators in networks constructed by adding regulaby
shortcuts to a ring of diffusively coupled neighboring nodes.

In comparison to the small-world network with randomly

added shortcuts, this regular small-world network allows us o

to carry out a detailed evaluation of the effects of newly ui_f(u‘“; € GiT'u;, @
added edges on the dynamics of the network and discuss the

emergent dynamic patterns on the basis of the theory of sym-

metric groups. On a ring of diffusively coupled chaotic os-wheree;; is a coupling strength between the nodesndj],
cillators symmetry-breaking bifurcation structures have bee@nd G is the adjacent matrix associated with the network.
observed to emerge from the desynchronization transitionsi”= (Uy,Uy, . .. Uy), and u;=(Xy,Xa, . .. Xy) represent
For coupled nonlinear oscillators with dihedral group sym-the dynamics oN coupled oscillators and the-dimensional
metry, the generic oscillation patterns after symmetry-vector of the dynamical variables of thi¢h node.I':R™
breaking bifurcation can be predicted by a general theory of>R™ characterizes the coupling schemes among the vari-
symmetric Hopf bifurcation developed by Golubitsiky and ables of the network’s nodes. To separate the effects of net-
co-workers[17,18], where each branch is determined by anwork structure from the distributed coupling strength, we
isotropy subgroup composed of spatial and temporal symmesonsider here only the homogeneous coupling, &g= €.
tries. Since the generic criterion for the synchronizability of sym-

In this work, we address the issue of synchronization andanetric network has been developed in R&f, here we want
symmetry-breaking patterns on simple regular networks conto point out that this criterion applies also to arbitrary net-
structed from a ring of locally coupled chaotic oscillators by works with zero row-sum

1063-651X/2003/68)/0652014)/$20.00 68 065201-1 ©2003 The American Physical Society



RAPID COMMUNICATIONS

JIANG, LOZADA-CASSOU, AND VINET PHYSICAL REVIEW EG68, 065201R) (2003

fusively coupled oscillator§with their eigenvalues given by
> G;=0. (2 —\.=(0,0.5858,0.5858,2,2,3.4142,3.4142,4). We also con-
! sider the following symmetric networks constructed from a
Therefore, for a large class of network topologies, the synfing by adding regular shortcuts to it. _ _
chronizability of a network of coupled dynamic elements can (& A cube with eight oscillators on each of its vertices,
be determined by analyzing separately the node dynamics

and the spectrum property of the network connectivity ma- -3 1 0 1 0 0 0 1
trix. The basic strategy is the following. First one linearizes 1 -3 1 0 0 1 0
Eq. (1), and then diagonaliz&s to get a block diagonalized 0 1 -3 1 0 1 0 0
variational equation for each node:
_ 1 0 1 -3 1 0 0 0
m=[Df(s) = ml T, () =l o 0 0o 1 -3 1 o 1]
where — v, is an eigenvalue o6, k=0,1,2 ... N—1. For 0 0 1 0 1 -3 1 0
asymmetric networks or directed graphg, may be com- o 1 0 0 o0 1 -3 1
plex. On the other hand, for any given node dynamics de- 1 0 0 0 1 0 1 3
scribed by u=f(u), one can calculate the maximum
Lyapunov exponenk ., from the following generic varia- whose eigenvalues age=—(6,0,4,2,4,2,4,2).
tional equatior(9,10]: (b) A ring of eight coupled oscillators with diametrical
: . connections,
{=[Df(s)=(atip)I']¢. 4
The region on parameter space, ) with \,,,<0 corre- -8 1 1 0 0 1
sponds to the stable synchronous regime. By a comparison of 1 -3 1 0 0 1 0 0
the eigenvalues o6 with the stable synchronization zone 0 1 -3 1 0 0 1 0
delimited by a(8) and a,(B8), with a;<a,, one may de-
termine the coupling strengths for which the synchronization . _ 0 0 1 -3 1 0 0 1
can be achieved. Suppose thet Im(vy,)<B. where 3. is 2 1 0 0 1 -3 1 0 0|’
the maximum ofB such that 5, «,8) <0 for 8> 3., then 0 1 0 0 1 - 1 0
a network is synchronizable if
0 0 1 0 0 1 -3 1
az(v) _ea(v) 5 1 0 0 1 0 0 1 -3
Mmax  Mmin
and its eigenvalues are given by

Wheresmax and umiq are the largest and smallest real eigen-_ 4 5 4142 5.4142,2,2,2.5858,2.5858). It is noted that the
values of G, respectively. This criterion will considerably gjgenyalues for symmetric connectivity matrix, or undirected
simplify the discussion of the influence of network structurey - hhs are real if the coupling strength is homogeneous. In
on its collective dynamics. For a given dynamics, we Cafpis case the synchronization region is determined by solving
assess the synchronizability by simply calculating the €igeNEg (3 for A as a function ofa and B such that
values of the connectivity matrix associated with the network L) =\ mjzz) ~0. We find thata,=5.25 anda,

and compare them with E_QS)‘ For the phenomena studied =m139.07 for r?:?Jupled Lorenz oscillators, while;=0.1435
here, we take Lorenz oscillators as nodes of our network, anda,=4.47 for standard Rssler oscillators. It then follows

from Eq. (5) that a ring of coupled oscillators with nearest-

x=o(y=x), neighbor coupling is synchronizable if standardsBler os-

) cillator is used, while it is not synchronizable if Lorenz os-
Yy=rX—y=—xz, cillator is employed. On the other hand, using Lorenz
) oscillator as the node dynamics, the networks define@Gby

z=xy—bz (6)  andG, are synchronizable.

) ) By using the same criterion we can study the effects of

We assume that the coupling scheme among the variablegy ctural changes of networks on its dynamics. For instance,

of the oscillators is in a ring of five coupled Lorenz oscillators, synchronous
chaos is observed in the range 3.7988<5.271. By adding

one link between two arbitrary next nearest neighbors, the
, (7)  synchronization range becomes 3.7988<4.1295. Thus,
the synchronous state becomes unstable whed.1295,

due to short wavelength instability. The synchronization can

which can vyield a short wavelength bifurcation transitionalways be attained if a sufficient number of shortcuts are

from the homogeneous chaos at large coupling strefigih ~ added to the network. We have also examined other con-

The networks we study in this work are a ring of eight dif- structive networks based on a ring of locally coupled oscil-
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FIG. 1. Schematic plot of a cube with eight diffusively coupled g 4
Lorenz oscillators at each of its verticé®, and a ring of locally fill ¢ O

coupled oscillators with the additional diametrical connecti@ns
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lators. It is found that among all configurations with three

connections per node, only networks suchs G,, and a FIG. 2. The first four largest Lyapunov exponents as a function
combination of G; and G, show chaos synchronization, of coupling strengthe, for the networkG, with Lorenz oscillators
strongly indicating the intriguing effects of incorporating ad- as its nodes. The same random initial conditions are used for all

ditional arbitrary shortcuts. values ofe.

We now turn to the analysis of spatiotempo(&ll) pat-
terns emergent from the symmetry-breaking bifurcations. P.: (1357(2468,
The spatial structure of the solution to E@) may be deter-
mined by the symmetry groups of the network. For a cube P>: (15(26)(37)(498),
with oscillators on its vertices, the symmetry group is the
octahedral grouf®, which has three maximal isotropy sub- Ps: (1)(28)(37)(46)(5),
groups, that is, the dihedral grolp,, the permutation group
Ss, andZh@ Z), [19]. If we number the vertices of a cube as P,: (18)(27)(36)(45),
in Fig. 1 and let the numbers in a parenthesis stand for the
vertices that have the same dynamical state, then the total Ps: (1256(3479 (from P,).

topologically different symmetry-breaking bifurcation pat-
terns for the networks; can be evaluated by analyzing sym-  Those patterns that involve the dynamical states of the
metric solutions to Eq(1) under the actions of the elements same wave form but different phases are not included in the
of the isotropy subgroups involved. They are given by above list. For example, the solution with spatial structure
(12)(3478(56) actually represents two different dynamical
P,: (1357(2468 (D,), states. The difference between oscillat@#8) and (56) may

be in their phases.

We have calculated the whole Lyapunov exponent spectra
for coupled Lorenz chaotic oscillators with connectivity ma-
trices G; and G,. Figure 2 shows the first four largest

P2 (13)(24)(57)(68) (D,),

P3: (18)(27)(36)(45) (Da),

. Lyapunov exponentsLE’s) as a function of the coupling
P, (16)(2 4 D .
a: (19(29(38)(47) (D), strength e, for a set of system parameters given by
P.: (14)(2 f 7t =10.0,R=28.0, andb=1.0. Random initial conditions are
5: (14(29(38)(67) (22927, used in all numerics performed in this work. The variation of
. LE's reveals many important dynamical features of the
Pe: (1)(28)(35)(4)(6)(7 , : o )
6: (DEYEHOBNT) (S) coupled system. From Fig. 2 it is seen that the first four
P,: (1)(248)(357)(6) (from Pg) largest LE's increase first and then decrease continuously
" ol with e. Synchronous chaos is reached when the second larg-
Pg: (1368(2457) (from P,), est positive Lyapunov exponent approaches zero. eAt
~2.0, we find that the coupled system is divided into two
Pg: (1234 (5678 (from P,), clusters, each formed by four synchronous chaotic oscillators
showing the typical long wavelength spatial structure sym-
Py (1467)(25)(38) (from Pg). bolized by (1234 (5678. A desynchronization transition oc-

curs ate=3.16 through the short wavelength bifurcation. By
Here the pattern®,—P,, are so-called degenerated patternsfurther increasing the coupling strength, the coupled system
which can be derived from the fundamental ones, as indiexhibits multistability, where the fixed-point, periodic, and
cated in the parenthesis. Similarly, for a ring of eight locally chaotic states coexist. A variety of ST structures are found
coupled oscillators with diametrical connections we find thefor larger values ok, where almost all the admissible spatial
following. patterns are observed. We find that after short wavelength
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bifurcation the dominant spatial pattern(k357(2468 with  for the network topologys,, the system does not show mul-
different temporal oscillation modes. For netwdB, the tistable states for the parameters considered in this work. The
short wavelength instability excites a spatial zigzag, temposystem is in a synchronous stateeat2.9, and a short wave-
rally chaotic state, in sharp contrast with the fixed-point stat@ength bifurcation occurs at=3.76.

observed for the ring network and netwaB¢. At e=3.83 In summary, we have investigated the chaos synchroniza-
the chaotic state is replaced by the fixed-point state Withion and symmetry-breaking bifurcations of coupled chaotic
same spatial pattern. A typical Hopf bifurcation from the oscillators with different connection topologies. We show
fixed-point to periodic state occurs &t 4.055. The oscilla-  that by using a generic criterion, one may deduce the condi-
tion amplitude of_ _thls pe_zrlodlc s_olutlon Increases W"th tion for synchronization-desynchronization transition and bi-
away from the (_:rltlcal point. we find that the_multlstablllty furcation types involved, for networks of any size as long as
becomes a d.omlnant phenomena when C_ouphng strquths &ife network topology and the coupling schemes between the
large, as indicated by the strong fluctuations of LE'S in SeVyay ok units are known. We have carried out extensive
eral coupling ranges. In these regimes we find the coexistya\ysis for various symmetric and asymmetric network to-
ence of chaotic and periodic states with the same or differe ologies and different dynamical systems. Our numerical re-

spatial patterns, different chaotic states with the same spati@|,j;s are in complete agreement with the predictions by the

mode, different periodic states with the same spatial StruCgeneric variational equation. We have also investigated the

ture, etc. For example, for network topolody, with €  gharial structures of the coupled system in the asynchronous
—6.91, we found two different ST patterns characterized byeqimes. We find that many emergent dynamical patterns are
(1357(2468 (two chaotic orbits and (1256(3478 (WO ¢iosely related to the network topologies. It should be
period-1 orbitg. The diversity of spatiotemporal states asso-nointed out that for regular network structures one may eas-
ciated with a specific network structure is very important injy estaplish a relationship between the possible dynamics
analy5|s an_d design of networks for achieving certain dy'patterns with the network topology, through symmetry group
namical regimes. Here we s_how that structured networks Cafnalysis. Nevertheless, not all the patterns predicted by sym-
be used to generate dynamical features that are not present i,y consideration are stable. The stability analysis of dy-
coupled systems of simple or random network topologies. 5mjc patterns remains a challenging problem, which may be

The spatiotemporal features exhibited in network withyg|ated to the general stability problem of the clustering
connection matrixG, are rather different from those exhib- giates in a coupled system.

ited by G;. Those two network topologies have the same
number = 3) of connections per node, and the same num- This research was supported in part by Grant Nos. 3110P-
ber of newly added connection linkenE4). We find that E9607 and 2115-31930 from CONACYT.
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