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Synchronization and symmetry-breaking bifurcations in constructive networks
of coupled chaotic oscillators
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The spatiotemporal dynamics of networks based on a ring of coupled oscillators with regular shortcuts
beyond the nearest-neighbor couplings is studied by using master stability equations and numerical simula-
tions. The generic criterion for dynamic synchronization has been extended to arbitrary network topologies
with zero row-sum. The symmetry-breaking oscillation patterns that resulted from the Hopf bifurcation from
synchronous states are analyzed by the symmetry group theory.
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Dynamics of networks composed of coupled nonlinear
cillators with regular or random network topologies is a ge
eral and important topic in many fields such as optics, c
densed matter physics, chemistry, and biology@1–6#.
Organized networks of elementary dynamical units consti
a basis for most cognitive structures in living organisms.
recent years networks of diffusively or globally couple
regular and chaotic oscillators have attracted consider
attention@7–10#. Dynamical processes on small-world ne
works and other networks with dynamical connectivity a
now under intensive study@11–15#. The network topologies
of coupled systems currently under investigation are eit
very simple such as nearest-neighbor and all-to-all conn
tions, or rather complicated such as an ensemble of rando
connected nodes. Dynamical behaviors on networks w
high topology symmetries beyond the simple ring or regu
lattice structures have not been investigated extensively
far, although the basic theory@9# and a few of recent at
tempts@16# have been made in this respect. In view of t
generality and importance of such kind of networks, we p
pose and investigate dynamical features exhibited by cou
chaotic oscillators in networks constructed by adding regu
shortcuts to a ring of diffusively coupled neighboring nod
In comparison to the small-world network with random
added shortcuts, this regular small-world network allows
to carry out a detailed evaluation of the effects of new
added edges on the dynamics of the network and discus
emergent dynamic patterns on the basis of the theory of s
metric groups. On a ring of diffusively coupled chaotic o
cillators symmetry-breaking bifurcation structures have b
observed to emerge from the desynchronization transitio
For coupled nonlinear oscillators with dihedral group sy
metry, the generic oscillation patterns after symmet
breaking bifurcation can be predicted by a general theory
symmetric Hopf bifurcation developed by Golubitsiky an
co-workers@17,18#, where each branch is determined by
isotropy subgroup composed of spatial and temporal sym
tries.

In this work, we address the issue of synchronization a
symmetry-breaking patterns on simple regular networks c
structed from a ring of locally coupled chaotic oscillators
1063-651X/2003/68~6!/065201~4!/$20.00 68 0652
-
-
-

te
n

le

r
c-
ly

th
r
so

-
ed
r
.

s

the
-

-
n
s.
-
-
f

e-

d
n-

adding regular long-range links. We show that the gene
criterion for synchronization of coupled systems develop
in Ref. @9# can be applied to a much wider class of networ
of coupled identical dynamic nodes including the asymm
ric networks or the directed graphs, where both the asym
try in the coupling constant and in the network topology a
taken into account. We also show that the emergent dyna
patterns that resulted from symmetry-breaking Hopf bifur
tions from the synchronous states can be classified by
group properties of underlying symmetry of the network
pologies. Our numerical results show that the addition o
few of nonlocal connections does not necessarily result
synchronization, and under certain circumstance the sync
nized chaos states may be destabilized by adding arbit
shortcuts. We find that the addition of regular long-ran
connections to a ring of coupled nodes breaks down the s
metry of original network by altering its topology, and ther
fore, gives rise to much richer dynamical behaviors a
phase transition scenarios of the coupled systems.

To illustrate our idea, we considerN identical coupled
nonlinear oscillators, whose collective dynamics is describ
by

u̇i5f~ui !1(
j

e i j Gi j Guj , ~1!

wheree i j is a coupling strength between the nodesi and j,
and G is the adjacent matrix associated with the netwo
uT5(u1 ,u2 , . . . ,uN), and ui5(x1 ,x2 , . . . ,xm) represent
the dynamics ofN coupled oscillators and them-dimensional
vector of the dynamical variables of thei th node. G:Rm

→Rm characterizes the coupling schemes among the v
ables of the network’s nodes. To separate the effects of
work structure from the distributed coupling strength, w
consider here only the homogeneous coupling, i.e.,e i j 5e.
Since the generic criterion for the synchronizability of sym
metric network has been developed in Ref.@9#, here we want
to point out that this criterion applies also to arbitrary n
works with zero row-sum
©2003 The American Physical Society01-1
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(
j

Gi j 50. ~2!

Therefore, for a large class of network topologies, the s
chronizability of a network of coupled dynamic elements c
be determined by analyzing separately the node dynam
and the spectrum property of the network connectivity m
trix. The basic strategy is the following. First one lineariz
Eq. ~1!, and then diagonalizesG to get a block diagonalized
variational equation for each node:

ḣk5@D f ~s!2gkG#hk , ~3!

where2gk is an eigenvalue ofG, k50,1,2, . . . ,N21. For
asymmetric networks or directed graphs,gk may be com-
plex. On the other hand, for any given node dynamics
scribed by u̇5f(u), one can calculate the maximum
Lyapunov exponentlmax from the following generic varia-
tional equation@9,10#:

ż5@D f ~s!2~a1 ib!G#z. ~4!

The region on parameter space (a,b) with lmax,0 corre-
sponds to the stable synchronous regime. By a compariso
the eigenvalues ofG with the stable synchronization zon
delimited bya1(b) anda2(b), with a1<a2, one may de-
termine the coupling strengths for which the synchronizat
can be achieved. Suppose thatn5Im(gk),bc wherebc is
the maximum ofb such thatlmax(a,b)<0 for b.bc , then
a network is synchronizable if

a2~n!

mmax
.

a1~n!

mmin
, ~5!

wheremmax andmmin are the largest and smallest real eige
values of G, respectively. This criterion will considerabl
simplify the discussion of the influence of network structu
on its collective dynamics. For a given dynamics, we c
assess the synchronizability by simply calculating the eig
values of the connectivity matrix associated with the netw
and compare them with Eq.~5!. For the phenomena studie
here, we take Lorenz oscillators as nodes of our network

ẋ5s~y2x!,

ẏ5rx2y2xz,

ż5xy2bz. ~6!

We assume that the coupling scheme among the varia
of the oscillators is

G5S 0 1 0

0 0 0

0 0 0
D , ~7!

which can yield a short wavelength bifurcation transiti
from the homogeneous chaos at large coupling strength@10#.
The networks we study in this work are a ring of eight d
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fusively coupled oscillators~with their eigenvalues given by
2lk5(0,0.5858,0.5858,2,2,3.4142,3.4142,4). We also c
sider the following symmetric networks constructed from
ring by adding regular shortcuts to it.

~a! A cube with eight oscillators on each of its vertices

G151
23 1 0 1 0 0 0 1

1 23 1 0 0 0 1 0

0 1 23 1 0 1 0 0

1 0 1 23 1 0 0 0

0 0 0 1 23 1 0 1

0 0 1 0 1 23 1 0

0 1 0 0 0 1 23 1

1 0 0 0 1 0 1 23

2 ,

whose eigenvalues arem52(6,0,4,2,4,2,4,2).
~b! A ring of eight coupled oscillators with diametrica

connections,

G251
23 1 0 0 1 0 0 1

1 23 1 0 0 1 0 0

0 1 23 1 0 0 1 0

0 0 1 23 1 0 0 1

1 0 0 1 23 1 0 0

0 1 0 0 1 23 1 0

0 0 1 0 0 1 23 1

1 0 0 1 0 0 1 23

2 ,

and its eigenvalues are given b
2(0,4,5.4142,5.4142,2,2,2.5858,2.5858). It is noted that
eigenvalues for symmetric connectivity matrix, or undirect
graphs, are real if the coupling strength is homogeneous
this case the synchronization region is determined by solv
Eq. ~3! for lmax as a function ofa and b such that
lmax(a1)5lmax(a2)50. We find that a155.25 and a2
519.07 for coupled Lorenz oscillators, whilea150.1435
anda254.47 for standard Ro¨ssler oscillators. It then follows
from Eq. ~5! that a ring of coupled oscillators with neares
neighbor coupling is synchronizable if standard Ro¨ssler os-
cillator is used, while it is not synchronizable if Lorenz o
cillator is employed. On the other hand, using Lore
oscillator as the node dynamics, the networks defined byG1
andG2 are synchronizable.

By using the same criterion we can study the effects
structural changes of networks on its dynamics. For instan
in a ring of five coupled Lorenz oscillators, synchrono
chaos is observed in the range 3.7988,e,5.271. By adding
one link between two arbitrary next nearest neighbors,
synchronization range becomes 3.7988,e,4.1295. Thus,
the synchronous state becomes unstable whene.4.1295,
due to short wavelength instability. The synchronization c
always be attained if a sufficient number of shortcuts
added to the network. We have also examined other c
structive networks based on a ring of locally coupled os
1-2
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lators. It is found that among all configurations with thr
connections per node, only networks such asG1 , G2, and a
combination of G1 and G2 show chaos synchronization
strongly indicating the intriguing effects of incorporating a
ditional arbitrary shortcuts.

We now turn to the analysis of spatiotemporal~ST! pat-
terns emergent from the symmetry-breaking bifurcatio
The spatial structure of the solution to Eq.~1! may be deter-
mined by the symmetry groups of the network. For a cu
with oscillators on its vertices, the symmetry group is t
octahedral groupO, which has three maximal isotropy sub
groups, that is, the dihedral groupD4, the permutation group
S3, andZ2

r
% Z2

t @19#. If we number the vertices of a cube a
in Fig. 1 and let the numbers in a parenthesis stand for
vertices that have the same dynamical state, then the
topologically different symmetry-breaking bifurcation pa
terns for the networkG1 can be evaluated by analyzing sym
metric solutions to Eq.~1! under the actions of the elemen
of the isotropy subgroups involved. They are given by

P1 : ~1357!~2468! ~D4!,

P2 : ~13!~24!~57!~68! ~D4!,

P3 : ~18!~27!~36!~45! ~D4!,

P4 : ~16!~25!~38!~47! ~D4!,

P5 : ~14!~25!~38!~67! ~Z2
r

% Z2
t !,

P6 : ~1!~28!~35!~4!~6!~7! ~S3!,

P7 : ~1!~248!~357!~6! ~ from P6!,

P8 : ~1368!~2457! ~ from P2!,

P9 : ~1234!~5678! ~ from P2!,

P10: ~1467!~25!~38! ~ from P5!.

Here the patternsP7–P10 are so-called degenerated patter
which can be derived from the fundamental ones, as in
cated in the parenthesis. Similarly, for a ring of eight loca
coupled oscillators with diametrical connections we find
following.

FIG. 1. Schematic plot of a cube with eight diffusively coupl
Lorenz oscillators at each of its vertices~a!, and a ring of locally
coupled oscillators with the additional diametrical connections~b!.
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P1 : ~1357!~2468!,

P2 : ~15!~26!~37!~48!,

P3 : ~1!~28!~37!~46!~5!,

P4 : ~18!~27!~36!~45!,

P5 : ~1256!~3478! ~ from P2!.

Those patterns that involve the dynamical states of
same wave form but different phases are not included in
above list. For example, the solution with spatial structu
~12!~3478!~56! actually represents two different dynamic
states. The difference between oscillators~12! and ~56! may
be in their phases.

We have calculated the whole Lyapunov exponent spe
for coupled Lorenz chaotic oscillators with connectivity m
trices G1 and G2. Figure 2 shows the first four larges
Lyapunov exponents~LE’s! as a function of the coupling
strength e, for a set of system parameters given bys
510.0, R528.0, andb51.0. Random initial conditions are
used in all numerics performed in this work. The variation
LE’s reveals many important dynamical features of t
coupled system. From Fig. 2 it is seen that the first fo
largest LE’s increase first and then decrease continuo
with e. Synchronous chaos is reached when the second
est positive Lyapunov exponent approaches zero. Ae
'2.0, we find that the coupled system is divided into tw
clusters, each formed by four synchronous chaotic oscilla
showing the typical long wavelength spatial structure sy
bolized by~1234!~5678!. A desynchronization transition oc
curs ate53.16 through the short wavelength bifurcation. B
further increasing the coupling strength, the coupled sys
exhibits multistability, where the fixed-point, periodic, an
chaotic states coexist. A variety of ST structures are fou
for larger values ofe, where almost all the admissible spati
patterns are observed. We find that after short wavelen

FIG. 2. The first four largest Lyapunov exponents as a funct
of coupling strengthe, for the networkG1 with Lorenz oscillators
as its nodes. The same random initial conditions are used fo
values ofe.
1-3
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bifurcation the dominant spatial pattern is~1357!~2468! with
different temporal oscillation modes. For networkG1, the
short wavelength instability excites a spatial zigzag, tem
rally chaotic state, in sharp contrast with the fixed-point st
observed for the ring network and networkG2. At e53.83
the chaotic state is replaced by the fixed-point state w
same spatial pattern. A typical Hopf bifurcation from th
fixed-point to periodic state occurs ate54.055. The oscilla-
tion amplitude of this periodic solution increases withe
away from the critical point. we find that the multistabilit
becomes a dominant phenomena when coupling strength
large, as indicated by the strong fluctuations of LE’s in s
eral coupling ranges. In these regimes we find the coex
ence of chaotic and periodic states with the same or diffe
spatial patterns, different chaotic states with the same sp
mode, different periodic states with the same spatial str
ture, etc. For example, for network topologyG1 with e
56.91, we found two different ST patterns characterized
~1357!~2468! ~two chaotic orbits! and ~1256!~3478! ~two
period-1 orbits!. The diversity of spatiotemporal states ass
ciated with a specific network structure is very important
analysis and design of networks for achieving certain
namical regimes. Here we show that structured networks
be used to generate dynamical features that are not prese
coupled systems of simple or random network topologies

The spatiotemporal features exhibited in network w
connection matrixG2 are rather different from those exhib
ited by G1. Those two network topologies have the sam
number (n53) of connections per node, and the same nu
ber of newly added connection links (m54). We find that
.
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for the network topologyG2, the system does not show mu
tistable states for the parameters considered in this work.
system is in a synchronous state ate52.9, and a short wave
length bifurcation occurs ate53.76.

In summary, we have investigated the chaos synchron
tion and symmetry-breaking bifurcations of coupled chao
oscillators with different connection topologies. We sho
that by using a generic criterion, one may deduce the co
tion for synchronization-desynchronization transition and
furcation types involved, for networks of any size as long
the network topology and the coupling schemes between
network units are known. We have carried out extens
analysis for various symmetric and asymmetric network
pologies and different dynamical systems. Our numerical
sults are in complete agreement with the predictions by
generic variational equation. We have also investigated
spatial structures of the coupled system in the asynchron
regimes. We find that many emergent dynamical patterns
closely related to the network topologies. It should
pointed out that for regular network structures one may e
ily establish a relationship between the possible dynam
patterns with the network topology, through symmetry gro
analysis. Nevertheless, not all the patterns predicted by s
metry consideration are stable. The stability analysis of
namic patterns remains a challenging problem, which may
related to the general stability problem of the clusteri
states in a coupled system.
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